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Abstract

Purpose – To investigate numerically the settling of small solid particles in a suspension of motile
gyrotactic micro-organisms in order to evaluate the possibility of using bioconvection to slow down
settling and enhance mixing between particles.

Design/methodology/approach – Numerical computations are performed at the North Carolina
Supercomputing Center utilizing an Origin 2400 workstation. A conservative finite-difference scheme
is used to discretize the governing equations. A staggered uniform grid with the stream function and
vorticity stored in one set of nodes and the number densities of micro-organisms and solid particles
stored in another set of nodes is utilized. CPU time required to investigate plume development until it
attains steady-state for 36 £ 36 uniform mesh is about 50 h.

Findings – It is established that small solid particles that are heavier than water slow down
bioconvection. Extremely small particles (nanoparticles) that have negligible settling velocity do not
have any noticeable impact on bioconvection, very large particles (that have negligible diffusivity), or
very heavy particles (that have very large settling velocity) also do not have any impact on
bioconvection because they simply settle at the bottom. However, if the particles are of the optimal size
and density (gravitational settling must compete with Brownian diffusion to create an exponential
number density distribution of solid particles with the maximum at the bottom of the chamber), these
particles can effectively slow down bioconvection.

Research limitations/implications – The question how solid particles may affect the
wavelengths of bioconvection patterns requires further investigation.

Practical implications – The finding that solid particles slow down bioconvection may be
important in using bioconvection to enhance mixing in fluid microvolumes.

Originality/value – The paper provides a model and numerical data about the effect of
bioconvection on mixing of small solid particles. These data are valuable for researches working in
fundamental fluid mechanics, multiphase flow, and applications of bioconvection.
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Nomenclature
a ¼ radius of a micro-organism, m
B ¼ time scale for the reorientation of

micro-organisms by the gravitational
torque against viscous torque,
4pma 3=ðmghÞ; s

Dm ¼ diffusivity of micro-organisms, m2/s
Dp ¼ diffusivity of solid particles due to

Brownian diffusion and interactions
with micro-organisms, m2/s

D*p ¼ ratio of the diffusivity of solid
particles to diffusivity of
micro-organisms, Dp=Dm

g ¼ gravity vector, 9.81 m/s2

G ¼ gyrotaxis number, BDm=L 2

h ¼ displacement of the center of mass of
a gyrotactic micro-organism from its
center of buoyancy, m

H ¼ height of the chamber, m
J*m ¼ dimensionless flux of

micro-organisms, defined by equation
(17a)

J*p ¼ dimensionless flux of solid particles,
defined by equation (17b)

L ¼ width of the chamber, m
nm ¼ number density of micro-organisms,

1/m3

�nm ¼ average number density of
micro-organisms, 1/m3

n*m ¼ dimensionless number density of
micro-organisms, nm=�nm

np ¼ number density of solid particles,
1/m3

�np ¼ average number density of solid
particles, 1/m3

n*p ¼ dimensionless number density of solid
particles, np=�nm

�n*p ¼ ratio of the average number density of
particles to that of micro-organisms,
�np=�nm

p̂ ¼ unit vector indicating the direction of
swimming of gyrotactic
micro-organisms

pe ¼ excess pressure (above hydrostatic),
Pa

Rm ¼ Rayleigh number for
micro-organisms,
�nmumDrmgL 3=ðr0nDmÞ

Rp ¼ Rayleigh number for solid particles,
�nmupDrpgL 3=ðr0nDmÞ

Sc ¼ Schmidt number, n=Dm

t ¼ time, s
t* ¼ dimensionless time, Dmt=L 2

u ¼ horizontal velocity component, m/s
v ¼ vertical velocity component, m/s
v ¼ velocity vector, m/s
Wm ¼ average swimming velocity of

micro-organisms (assumed to be
constant), m/s

W*m ¼ dimensionless average swimming
velocity of micro-organisms,
W mL=Dm

Wp ¼ particle settling velocity, m/s
W*p ¼ dimensionless particle settling

velocity, W pL=Dp

x ¼ horizontal coordinate, m
x* ¼ dimensionless horizontal coordinate,

x=L
x̂ ¼ unit vector in the x-direction
y ¼ vertical coordinate, m
y* ¼ dimensionless vertical coordinate, y=L
ŷ ¼ unit vector in the y-direction

Greek symbols
Drm ¼ density difference between

micro-organisms and water, rm 2 r0;
kg/m3

Drp ¼ density difference between solid
particles and water, rp 2 r0; kg/m3

z ¼ horizontal component of vorticity, 1/s
z* ¼ dimensionless horizontal component

of vorticity, zL 2=Dm

um ¼ volume of a micro-organism, m3

up ¼ volume of a particle, m3

Q ¼ angle between the vertical axis and
the swimming velocity of
micro-organisms

l ¼ aspect ratio of the chamber, H=L
m ¼ dynamic viscosity, assumed to be

approximately the same as that of
water, kg/(m s)

n ¼ kinematic viscosity, assumed to be
approximately the same as that of
water, m2/s

r0 ¼ density of water, kg/m3

rm ¼ density of micro-organisms, kg/m3

rp ¼ density of solid particles, kg/m3

c ¼ stream function, m2/s
c* ¼ dimensionless stream function, c=Dm
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1. Introduction
Bioconvection is a phenomenon caused by collective swimming in a particular
direction of motile micro-organisms. Most significant results in the area of
bioconvection were obtained over the last two decades (Pedley et al., 1988; Ghorai
and Hill, 1999; Pedley and Kessler, 1987, 1990, 1992). Gyrotactic micro-organisms (this
behavior is typical for many species of algae) swim against gravity in still water, but
once bioconvection develops, their swimming direction is determined by the balance of
two torques: the viscous torque acting on a body placed in a shear flow and the torque
that is generated by gravity because the center of mass of a typical algae is displaced
from its center of buoyancy. Algae are approximately 5 percent denser than water;
gyrotactic behavior results in their swimming toward the regions of most rapid
downflow. Therefore, the regions of downflow become denser than the regions of
upflow. Buoyancy increases the upward velocity in the regions of upflow and
downward velocity in the regions of downflow, thus enhancing velocity fluctuations
and inducing macroscopic convective fluid motion (Pedley et al., 1988; Ghorai and Hill,
1999, 2000). The formation of almost regular patterns and gyrotactic plumes in algal
suspensions is documented in numerous experimental papers (Kessler, 1985a, b;
Kessler et al., 1997, 2000).

Despite a considerable number of theoretical and experimental works on
bioconvection, the effect of bioconvection on settling of small solid particles has
never been studied before. This is an interesting topic because it deals with a
possible application of bioconvection: the utilization of bioconvection to slow down
settling and enhance mixing between particles. The advantage of bioconvection is
that it provides a simple mechanism for enhancing mixing and slowing down
settling in very small fluid volumes (Ghorai and Hill, 1999, 2000, for example,
studied bioconvection in a chamber as small as 5 mm £ 5 mm). This may be
important, for example, in the pharmaceutical industry or for the development of
new medical tests. This statement implies micro-organisms not interfering with the
test and surviving the presence of reactants.

This research is concentrated on investigating the settling of solid particles in a
dilute suspension that contains both gyrotactic micro-organisms (whose number
density is nm) and small particles (whose density is np) in a two-dimensional chamber
of depth H and width L whose side walls are assumed to be shear-free. Both
micro-organisms and particles are heavier than water. The particles are small, so that
the Brownian diffusion is not completely negligible. If diffusion were completely
negligible, all particles would eventually end up at the bottom of the chamber. It is also
assumed that particle diffusivity, caused by the Brownian motion, is enhanced by the
interaction between the particles and the swimming micro-organisms. Because the
suspension is dilute, this interaction is expected to be weak. Nevertheless, it cannot be
completely neglected; therefore, it is modeled here by increasing the particle diffusivity
as compared to its value predicted by the Einstein correlation. Stability analysis of this
suspension is carried out in Kuznetsov and Avramenko (2004).

The computational domain is shown schematically in Figure 1(a). The width of the
domain is L (the coordinate x varies from 2L=2 to L=2) and the height of the domain is
H (the coordinate y varies from 0 to H). The top boundary is assumed to be stress-free
and the bottom boundary is rigid (the no-slip condition is imposed there). The side
walls are stress-free to model periodic condition; a wider computational domain would
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produce several identical plumes, it is assumed that the plume spacing is L. The
question how solid particles may affect the wavelengths of bioconvection patterns
requires further investigation.

2. Governing equations
2.1 Dimensional governing equations
Governing equations are written by extending equations given in Ghorai and Hill
(1999, 2000) to account for solid particles. The cross-effect between micro-organisms

Figure 1.
(a) Computational domain
and boundary conditions;

and (b) swimming
direction of a gyrotactic

micro-organism
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and solid particles movement is neglected because the suspension is dilute (volume
concentrations of both micro-organisms and solid particles are much smaller than
unity). Very slow motion associated with bioconvection flows justifies the creeping
flow assumption and allows neglecting the inertia terms in these equations.

x- and y-momentum equations:

r0
›u

›t
¼ 2

›pe

›x
þ m

›2u

›x 2
þ

›2u

›y 2

� �
ð1Þ

r0
›v

›t
¼ 2

›pe

›y
þ m

›2v

›x 2
þ

›2v

›y 2

� �
2 nmumDrmg 2 npupDrpg ð2Þ

Continuity equation:

›u

›x
þ

›v

›y
¼ 0 ð3Þ

Conservation of motile micro-organisms:

›ðnmÞ

›t
¼ 2divðnmvþ nmW mp̂2 Dm7nmÞ ð4Þ

Conservation of solid particles:

›ðnpÞ

›t
¼ 2div npvþ npW p

g

jgj
2 Dp7np

� �
ð5Þ

where Dm is the diffusivity of micro-organisms (this assumes that all random motions
of the micro-organisms can be approximated by a diffusive process); Dp is the
diffusivity of particles due to the Brownian motion and interactions with
micro-organisms (Dp is smaller than Dm, but still not zero); nm is the number
density of motile micro-organisms; np is the number density of solid particles; pe is the
excess pressure above hydrostatic; p̂ is the unit vector indicating the direction of
swimming of micro-organisms (equations for this vector are given in Pedley et al.,
1988); t is the time; u and v are the x- and y-velocity components, respectively; v is the
velocity vector, (u,v); W mp̂ is the vector of micro-organisms’ average swimming
velocity relative to the fluid (Wm is assumed to be constant); W pðg=jgjÞ is the vector of
particles’ settling velocity relative to the fluid (Wp is assumed to be constant, the
particles settle straight downward); x and y are the Cartesian coordinates (x is the
horizontal coordinate and y is the vertical coordinate); Drm is the density difference
between the micro-organisms and the water, rm 2 r0; Drp is the density difference
between the particles and the water, rp 2 r0; um is the volume of a micro-organism;
up is the volume of a particle; m is the dynamic viscosity, assumed to be approximately
the same as that of water; and r0 is the density of water.

For spherical particles the settling velocity can be found according to the Stokes law
(Batchelor, 1982), as:

W p ¼
upDrpg

6pm 3
4
up

p

� �1=3
ð6Þ
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According to Ghorai and Hill (2000), vector p̂ that determines the swimming direction
of a gyrotactic micro-organism can be given in terms of the angle Q between the
vertical axis and the vector of swimming velocity of the micro-organism (cf.
Figure 1(b)), so that p̂ ¼ ðpx; pyÞ ¼ ð2sinQ; cosQÞ: Angle Q satisfies the following
equation:

dQ

dt
¼

Bz2 sinQ

2B
ð7Þ

where z is the horizontal component of vorticity and B is the time scale for the
reorientation of micro-organisms by the gravitational torque against viscous
resistance. Parameter B was called the “gyrotactic orientation parameter” by Pedley
and Kessler (1987), it is defined as:

B ¼
4pma 3

mgh
ð8Þ

where h is the displacement of the center of mass of a gyrotactic micro-organism from
its center of buoyancy, m is the mass of the micro-organism, and a is the radius of the
micro-organism.

2.2 Dimensionless governing equations
Utilizing the stream function-vorticity formulation, the governing equations can be
recast in dimensionless form as follows:

z* ¼ 272c* ð9Þ

S21
c

›z*

›t*
þ u*

›z*

›x*
þ v*

›z*

›y*

� �
¼ 72z* 2 Rm

›n*m
›x*

þ Rp
›n*p
›x*

� �
ð10Þ

›n*m
›t*

¼ 27 · ½n*mðv* þ W*mp̂Þ2 7n*m� ð11Þ

›n*p
›t*

¼ 27 · n*p v* þ W*p
g

jgj

� �
2 D*p7n*p

� �
ð12Þ

In Ghorai and Hill (1999, 2000) it is shown that vector p̂ can be computed as:

p̂ ¼

ð2k2 ðk 2 2 1Þ1=2; 0Þ; k , 21

ð2k; ð1 2 k2Þ1=2Þ; jkj # 1

ð2kþ ðk 2 2 1Þ1=2; 0Þ; k . 1

8>><
>>:

ð13Þ

where k ¼ Bz ¼ Gz* :
The dimensionless variables in equations (9)-(12) are:

x* ¼
x

L
; y* ¼

y

L
; t* ¼

Dm

L 2
t; u* ¼

›c*

›y*
; v* ¼ 2

›c*

›x*
; v* ¼ v

L

Dm
;
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W*m ¼ W m
L

Dm
; W*p ¼ W p

L

Dm
; n*m ¼

nm

�nm
; n*p ¼

np

�nm
;

Sc ¼
n

Dm
; G ¼

BDm

L 2
; Rm ¼

�nmumDrmgL 3

r0nDm
; Rp ¼

�nmupDrpgL 3

r0nDm
;

D*p ¼
Dp

Dm

ð14Þ

2.3 Initial and boundary conditions
Equations (9)-(12) must be solved subject to the following boundary conditions (cf.
Figure 1(a)). No-slip boundary condition is imposed at the bottom wall while the top
boundary and the side walls are assumed to be impermeable to the fluid and
stress-free. The assumption that the top surface is stress-free implies that the surface
tension is negligible and micro-organisms do not form a packed layer at the top
surface. Under these assumptions the boundary conditions can be presented as:

c* ¼ 0 at y* ¼ 0; l and x* ¼ ^0:5; ð15aÞ

where l is the aspect ratio, H=L;

›c*

›y*
¼ 0 at y* ¼ 0; ð15bÞ

›2c*

›y* 2
¼ 0 at y* ¼ l; and

›2c*

›x* 2
¼ 0 at x* ¼ ^0:5: ð15cÞ

All four boundaries of the domain are also impermeable to the fluid, micro-organisms,
and solid particles; therefore, normal fluxes of micro-organisms and solid particles are
zero through all these boundaries:

J*m · ŷ ¼ 0 and J*p · ŷ ¼ 0 at y* ¼ 0; l ð16aÞ

J*m · x̂ ¼ 0 and J*p · x̂ ¼ 0 at x* ¼ ^0:5; ð16bÞ

where x̂ and ŷ are the unit vectors in the x- and y-directions, respectively,

J*m ¼ n*mðv* þ W*mp̂Þ2 7n*m ð17aÞ

is the dimensionless flux of micro-organisms and

J*p ¼ n*p v* þ W*p
g

jgj

� �
2 D*p7n*p ð17bÞ

is the dimensionless flux of solid particles.
Initially, at t* ¼ 0; it is assumed that the fluid is motionless and the number density

distributions of micro-organisms and solid particles are uniform. As in Ghorai and Hill
(1999, 2000), small perturbations to these uniform distributions are utilized to ensure
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that the plume forms in the middle of the computational domain. This results in the
following initial condition:

c* ¼ 0; z* ¼ 0; n*m ¼ 1 þ 1 cosðmpx* Þ; n*p ¼
�np

�nm
þ 1 cosðmpx* Þ ð18Þ

where 1 ¼ 1025 and m ¼ 2:

2.4 Numerical procedure
A conservative finite-difference scheme is used to discretize the governing equations.
An implicit scheme with Euler backward differencing in time and central differencing
in space is utilized to obtain the transient solutions. A line-by-line tridiagonal matrix
algorithm with relaxation is used together with an iteration technique to solve the
nonlinear discretized equations. A staggered uniform grid with the stream function
and vorticity stored in one set of nodes and the number densities of micro-organisms
and solid particles stored in another set of nodes is utilized. The grid is chosen so that
the number density nodes lie in the interior of the computational domain only, whereas
those of the stream function and vorticity lie in the interior and at the boundary of the
domain. The mesh size is 36 £ 36: Computations are performed at the North Carolina
Supercomputing Center utilizing an Origin 2400 workstation. CPU time required to
investigate plume development until it attains steady-state for 36 £ 36 uniform mesh is
about 50 h. Grid independence of the solution was checked by performing a test
computation utilizing a uniform 72 £ 72 mesh, and the maximum variation of the fluid
velocity did not exceed 3 percent.

3. Results and discussion
Values of physical properties and geometrical parameters utilized in the computations
are summarized in Table I. Values of dimensionless groups that correspond to these
parameter values are given in Table II. The values of particle diffusivity are taken
larger than those following from the Einstein’s relation that determines the diffusivity
of small particles due to the Brownian motion. This is done to account for additional
random motions of particles that may result from their interactions with swimming
micro-organisms (a particle may be either directly hit by a micro-organism or it can
enter a propulsive stream caused by a swimming micro-organism).

The major aim of the presented computations is to investigate the effect of solid
particles on bioconvection as well as the effect of bioconvection on number density
distribution of solid particles in the chamber. Without bioconvection, solid particles
have exponential distribution across the chamber’s depth with the largest number
density at the bottom of the chamber (the particles do not all settle to the bottom
because of the Brownian diffusion). The particle number density distribution can be
obtained by integrating equation (12) for the case when v* ¼ ›n*p=›t* ¼ 0; as:

n*pðy* Þ ¼ 2
1

D*p

exp 2 1

D*p
W*py*

� �
2 1

exp 2 1

D*p
W*p

� �
2 1

�n*pW*p ð19Þ

To evaluate the effect of solid particles on bioconvection, the basic case when there are
no solid particles in the suspension is first investigated. Figure 2(a)-(d) shows the
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dimensionless number density of micro-organisms (a), the contours of the
dimensionless stream function (b), the fluid velocity vector filed (c), and the flow
streamlines (d) for the case of no solid particles when bioconvection plume attains its
steady-state (as shown below, this happens at t* ¼ 0:49825).

Figures 3-6 display the case with solid particles, computations are carried out for
Drp=Drm ¼ 5 and Dp=Dm ¼ 0:1: As shown in Table II, for all computations with
particles it is assumed that the average number density of particles is ten times smaller
than that of micro-organisms, �np=�nm ¼ 0:1: Since the case with solid particles is of
major interest for this investigation, Figures 3-6 show the development of the

Dimensionless average swimming velocity of
micro-organisms W*m¼Wm(L/Dm) 1022

Dimensionless particles settling velocity W*p¼Wp(L/Dm) Figures 3-8: 1.32£ 1023

Figure 9: 2.64 £ 1023

Figure 10: 5.28 £ 1023

Schmidt number Sc¼n/Dm 20
Gyrotaxis number G¼BDm/L 2 1022

Rayleigh number for micro-organisms Rm¼ n̄mumDrmgL 3/r0nDm 612.5
Rayleigh number for solid particles Rp¼ n̄mupDrpgL 3/r0nDm Figures 3-8: 3062.5

Figure 9: 6125
Figure 10: 12250

Dimensionless diffusivity of particles D*p¼Dp/Dm Figures 3-6, 9, 10: 0.1
Figure 7: 0.2
Figure 8: 1

Aspect ratio l¼H/L 1
Dimensionless average concentration of
particles �n*p ¼ �np= �nm 0.1

Table II.
Values of dimensionless
parameters utilized in
computations

Average number density of micro-organisms n̄m 1012 cells/m3

Average number density of solid particles n̄p 1011 cells/m3

Density of water r0 103 kg/m3

Specific gravity of micro-organisms Drm/r0 0.05
Specific gravity of solid particles Drp/r0 Figures 3-8: 0. 25

Figure 9: 0.5
Figure 10: 1

Volume of a micro-organism um 5£ 10216 m3

Volume of a particle up 5£ 10216 m3

Average swimming velocity of micro-organisms Wc 1024 m/s
Particle settling velocity (calculated according to
equation (6)) Wp Figures 3-8: 1.32£ 1025 m/s

Figure 9: 2.64 £ 1025 m/s
Figure 10: 5.28 £ 1025 m/s

Diffusivity of micro-organisms Dm 5£ 1028 m2/s
Diffusivity of particles Dp Figures 3-6, 9, 10: 5£ 1029 m2/s

Figure 7: 1£ 1028 m2/s
Figure 8: 5£ 1028 m2/s

Gyrotaxis orientation parameter B 5 s
Kinematic viscosity of the suspension n 1026 m2/s
Height of the computational domain H 0.005 m
Width of the computational domain L 0.005 m

Table I.
Physical properties and
geometrical parameters
utilized in the
computations
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bioconvection plume: Figure 3 shows the plume at t* ¼ 0:19825; Figure 4 shows the
plume at t* ¼ 0:3; Figure 5 at t* ¼ 0:49825; and Figure 6 at t* ¼ 0:59825: In
Figures 3-6, Figure (a) shows the dimensionless number density of micro-organisms,
Figure (b) shows the dimensionless number density of particles, Figure (c) shows
contours of the dimensionless stream function, and Figure (d) shows the fluid velocity
vector field. Table III shows the maximum values of the dimensionless number
densities of micro-organisms and particles, ðn*mÞmax and ðn*pÞmax; and the maximum
value of the dimensionless stream function, ðc* Þmax: As Table III shows, these three
parameters change by no more than 2.3 percent between t* ¼ 0:49825 and 0.59825.
Therefore, it is assumed that at t* ¼ 0:49825, the plume attains its steady state.

Figures 7 and 8 display the steady-state bioconvection plumes for the case of
Drp=Drm ¼ 5 when Dp=Dm ¼ 0:2 and 1, respectively. Table IV summarizes the
maximum values of the dimensionless number densities of micro-organisms and

Figure 2.
Basic case: no solid

particles, steady-state
plume ðt* ¼ 0:49825Þ
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particles, ðn*mÞmax and ðn*pÞmax; and the maximum value of the dimensionless stream
function, ðc* Þmax; for the basic case of no solid particles (Figure 2) and cases with solid
particles (Figures 5, 7, and 8) for different diffusivities of the particles (all cases with
particles shown in Table IV are computed for Drp=Drm ¼ 5). Number density of
micro-organisms takes on its maximum value at the top of the computational domain,
while number density of solid particles takes on its maximum value at the bottom of
the domain. According to boundary conditions (equation (15a)), the stream function
takes on zero value at the boundaries of the domain. Since the stream function field is
similar for all computed cases, the maximum value of the stream function indicates, on
average, how strong the fluid velocity in the domain is. Figures 5, 7, and 8 and Table IV
show that the increase of diffusivity of solid particles results in a more uniform

Figure 3.
Solid particles present,
�np=�nm ¼ 0:1; Drp=
Drm ¼ 5; D*p=Dm ¼ 0:1;
t* ¼ 0:19825
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distribution of the particles over the depth of the chamber. A much more interesting
conclusion is obtained by comparing the values of ðc* Þmax for the case of no solid
particles and the cases with solid particles of different diffusivities. For all computed
cases, the value of ðc* Þmax is the largest for the case with no solid particles, which
indicates that the presence of solid particles slows down bioconvection. Bioconvection
is slowed down more efficiently by larger particles that, according to the Einstein
relation, have smaller diffusivity and, therefore, concentrate near the bottom of the
chamber. This unexpected result has a simple physical explanation. Bioconvection is
caused by unstable density stratification that is created by the upswimming of
micro-organisms that are heavier than water. Very small particles (nanoparticles) that
have very large diffusivity and whose distribution across the depth of the chamber is
almost uniform have no impact on density stratification and, therefore, have no impact
on bioconvection. Larger particles with smaller diffusivity concentrate near the bottom

Figure 4.
Solid particles present,

�np=�nm ¼ 0:1; Drp=
Drm ¼ 5; Dp=Dm ¼ 0:1;

t* ¼ 0:3: (a)
Dimensionless number

density of
micro-organisms, (b)

dimensionless number
density of particles, (c)

contours of the
dimensionless stream

function, (d) fluid velocity
vector field
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of the chamber. Since the particles are heavier than water, they create a more stable
density stratification partly compensating for the increase of density in the upper fluid
layer caused by the upswimming of micro-organisms. Therefore, larger particles slow
down bioconvection more effectively than very small particles. Figure 9(a) shows
number density distributions of small particles at steady-state computed for two cases:
with no bioconvection (computed utilizing equation (19)) and with bioconvection (in
this case number density distribution is shown in the middle of the chamber, at
x* ¼ 0). Number density distributions shown in Figure 9(a) correspond to the cases
that are displayed in Figures 5, 7, and 8 and summarized in Table IV. In can be seen
that if particle diffusivity is very large (the case of Dp=Dm ¼ 1), the number density
distribution of such solid particles across the depth of the chamber is almost uniform,
which explains why these particles do not have considerable impact on bioconvection.
However, the conclusion that larger particles slow down bioconvection is true only if
the particles are not very large (which would imply that they have negligible

Figure 5.
Solid particles present,
�np=�nm ¼ 0:1; Drp=
Drm ¼ 5; D*p=Dm ¼ 0:1;
t* ¼ 0:49825 : (a)
dimensionless number
density of
micro-organisms; (b)
dimensionless number
density of particles; (c)
contours of the
dimensionless stream
function; and (d) fluid
velocity vector field
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Figure 6.
Solid particles present,

�np=�nm ¼ 0:1; Drp=
Drm ¼ 5; D*p=Dm ¼ 0:1;

t* ¼ 0:59825 : (a)
dimensionless number

density of
micro-organisms; (b)

dimensionless number
density of particles; (c)

contours of the
dimensionless stream
function; and (d) fluid

velocity vector field

t* (n*m)max (n*p)max (c*)max

0.19825 10.0561 0.453481 0.213259
0.30000 6.90995 0.700287 2.05947
0.49825 7.38435 0.962994 1.9235
0.59825 7.37157 0.941157 1.95196

Notes: Maximum values of the dimensionless number densities of micro-organisms and particles, as
well as the maximum value of the dimensionless stream function in the computational domain for the
case of Drp=Drm ¼ 5 and D*p ¼ 0:1 at different time (based on the data shown in Figures 3-6) Table III.
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diffusivity) or very heavy (which would imply that they have very large settling
velocity). Such particles do not have any impact on bioconvection because they simply
settle down to the bottom. This means that there is an optimum size (optimum
diffusivity) of solid particles when they slow down bioconvection most efficiently.

Figures 10 and 11 display the steady-state bioconvection plumes for the case of
Dp=Dm ¼ 0:1 when Drp=Drm ¼ 10 and 20, respectively. Table V summarizes the
maximum values of the dimensionless number densities of micro-organisms and
particles, ðn*mÞmax and ðn*pÞmax; and the maximum value of the dimensionless stream
function, ðc* Þmax; for the basic case of no solid particles (Figure 2) and cases with solid
particles (Figures 5, 10, and 11) for different densities of the particles (all cases with
particles shown in Table V are computed for Dp=Dm ¼ 0:1). Table V shows that when
particles become too heavy and, therefore, settle too fast, they have almost no impact
on bioconvection. Number density distributions of solid particles in the middle of the

Figure 7.
Solid particles present,
�np=�nm ¼ 0:1; Drp=
Drm ¼ 5; Dp=Dm ¼ 0:2
and t* ¼ 0:49825
(steady-state plume): (a)
dimensionless number
density of
micro-organisms; (b)
dimensionless number
density of particles; (c)
contours of the
dimensionless stream
function; and (d) fluid
velocity vector field
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Figure 8.
Solid particles present,

�np=�nm ¼ 0:1; Drp=
Drm ¼ 5; Dp=Dm ¼ 1 and
t* ¼ 0:49825 (steady-state

plume): (a) dimensionless
number density of

micro-organisms;
(b) dimensionless number

density of particles;
(c) contours of the

dimensionless stream
function; and (d) fluid

velocity vector field

(n*m)max (n*p)max (c*)max

No solid particles 6.79392 0 2.05603
Dp/Dm¼1 7.01507 0.158789 2.00139
Dp/Dm¼0.2 7.36259 0.410833 1.93294
Dp/Dm¼0.1 7.38435 0.962994 1.9235

Notes: Maximum values of the dimensionless number densities of micro-organisms and particles, as
well as the maximum value of the dimensionless stream function in the computational domain at
steady-state conditions for Drp=Drm ¼ 5 for different diffusivities of solid particles (based on the data
shown in Figures 2, 5, 7, and 8) Table IV.
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chamber that are shown in Figures 9(b1, b2) correspond to the cases that are displayed
in Figures 5, 10, and 11 and summarized in Table V. (Figure 9(b2) shows number
density distributions of solid particles close to the bottom of the chamber on an
enlarged scale.) Figure 9(b1, b2) shows that heavy particles, because of their large
settling velocity, just concentrate near the bottom of the chamber (there are almost no
particles in the rest of the domain). This explains why very heavy particles (the case of
Drp=Drm ¼ 20) have almost no impact on bioconvection.

Figure 9.
Distributions of the
dimensionless number
density of solid particles in
the middle of the chamber
(at x* ¼ 0) computed with
no bioconvection and with
bioconvection
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4. Conclusions
It is established that small solid particles that are heavier than water slow down
bioconvection. This is attributed to the fact that solid particles create a more stable
density stratification than micro-organisms alone. Extremely small particles
(nanoparticles) that have negligible settling velocity do not have any noticeable
impact on bioconvection, very large particles (that have negligible diffusivity) or very
heavy particles (that have very large settling velocity) also do not have any impact on
bioconvection because they simply settle at the bottom. However, if the particles are of
the optimal size and density (gravitational settling must compete with Brownian
diffusion to create an exponential number density distribution of solid particles with
the maximum at the bottom of the chamber), these particles can effectively slow down
bioconvection. On the other hand, bioconvection makes number density distribution of
solid particles more uniform. Further experimental research is needed to confirm the
theoretical predictions of this paper.

Figure 10.
Solid particles present,

�np=�nm ¼ 0:1; Drp=
Drm ¼ 10; Dp=Dm ¼ 0:1;

and t* ¼ 0:49825
(steady-state plume):

(a) dimensionless number
density of

micro-organisms;
(b) dimensionless number

density of particles;
(c) contours of the

dimensionless stream
function; and (d) fluid

velocity vector field
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Figure 11.
Solid particles present,
�np=�nm ¼ 0:1; Drp=
Drm ¼ 20; Dp=Dm ¼ 0:1;
and t* ¼ 0:49825
(steady-state plume):
(a) dimensionless number
density of
micro-organisms;
(b) dimensionless number
density of particles;
(c) contours of the
dimensionless stream
function; and (d) fluid
velocity vector field

(n*m)max (n*p)max (c*)max

No solid particles 6.79392 0 2.05603
Drp/Drm¼5 7.38435 0.962994 1.9235
Drp/Drm¼10 7.25841 2.69321 1.93613
Drp/Drm¼20 6.81734 4.90278 2.04411

Notes: Maximum values of the dimensionless number densities of micro-organisms and particles, as
well as the maximum value of the dimensionless stream function in the computational domain at
steady-state conditions for Dp=Dm ¼ 0:1 for different densities of solid particles (based on the data
shown in Figures 2, 5, 9, and 10)Table V.
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